
Transport Layer Security (TLS) 1.3

1 Transport Layer Security (TLS) 1.3

WHITE PAPER

Impact on web gateways

https://www.mcafee.com/enterprise/en-us/home.html

WHITE PAPER

Transport Layer Security (TLS) 1.3

2 Transport Layer Security (TLS) 1.3

Impact on web gateways

New transport layer security (TLS) protocols are usually an expected evolution of encryption
protocols. However, no version in the past has caused such confusion as TLS 1.3. The
working group finished their work in mid-2017. Usually, rapid adoption as part of crypto-
providers such as OpenSSL is expected. However, an initial non-beta implementation is still
pending.

Surveying various resources, it appears that the changes that are part of TLS 1.3 are
significant—more than just the inclusion of better encryption and minor changes on
handshakes. Therefore, thorough testing is required before the final version is released.

Looking at the timeframes of the versions of secure sockets layer (SSL)/TLS and the gap
since the last version of TLS and the TLS 1.3 version, it is evident that something has to
happen quickly to avoid the SSL attacks we have witnessed in the last few years, such as
POODLE, Heartbleed, and others—and new ones that come along.

SSL 2.0 SSL 3.0 TLS 1.0 TLS 1.1 TLS 1.2 TLS 1.3
1995 1996 1999 2006 2008 2018

This report was written by:

Michael Schneider,
CISSP|CCSK, Senior Product
Manager

Connect With Us

https://securingtomorrow.mcafee.com/
https://twitter.com/mcafee_business
https://www.linkedin.com/company/mcafee/
http://www.facebook.com/mcafee
http://www.youtube.com/mcafee
http://www.slideshare.net/mcafee

3 Transport Layer Security (TLS) 1.3

WHITE PAPER

Scope of TLS 1.3
The RFC lists the following items as major differences to
TLS 1.2:

1.2. Major Differences from TLS 1.2
■■ Port the CFRG curves and signatures work from

RFC4492bis.
■■ Remove sequence number and version from

additional_data, which is now empty.
■■ Reorder values in HkdfLabel.
■■ Add support for version anti-downgrade mechanism.
■■ Update IANA considerations section and relax some of

the policies.
■■ Unify authentication modes. Add post-handshake

client authentication.
■■ Remove early_handshake content type. Terminate

0-RTT data with an alert.
■■ Reset sequence number upon key change (as

proposed by Fournet et al).
■■ Remove ClientCertificateTypes field from

CertificateRequest and add extensions.
■■ Merge client and server key shares into a single

extension.
■■ Change to RSA-PSS signatures for handshake

messages.
■■ Remove support for DSA.

■■ Update key schedule, per suggestions by Hugo,
Hoeteck, and Bjoern Tackmann.

■■ Add support for per-record padding.
■■ Switch to encrypted record ContentType.
■■ Change HKDF labeling to include protocol version and

value lengths.
■■ Shift the final decision to abort a handshake due to

incompatible certificates to the client rather than
having servers abort early.

■■ Deprecate SHA-1 with signatures.
■■ Add MTI algorithms.
■■ Remove support for weak and lesser-used named

curves.
■■ Remove support for MD5 and SHA-224 hashes with

signatures.
■■ Update lists of available AEAD cipher suites and error

alerts.
■■ Reduce maximum permitted record expansion for

AEAD from 2048 to 256 octets.
■■ Require digital signatures even when a previous

configuration is used.
■■ Merge EarlyDataIndication and KnownConfiguration.
■■ Change code point for server_configuration to avoid

collision with server_hello_done.
■■ Relax certificate_list ordering requirement to match

current practice.

4 Transport Layer Security (TLS) 1.3

WHITE PAPER

■■ Integration of semi-ephemeral DH proposal.
■■ Add initial 0-RTT support.
■■ Remove resumption and replace with PSK + tickets.
■■ Move ClientKeyShare into an extension.
■■ Move to HKDF.
■■ Prohibit RC4 negotiation for backwards compatibility.
■■ Freeze and deprecate record layer version field.
■■ Update format of signatures with context.
■■ Remove explicit IV.
■■ Prohibit SSL negotiation for backwards compatibility.
■■ Fix which MS is used for exporters.
■■ Modify key computations to include session hash.
■■ Remove ChangeCipherSpec.
■■ Renumber the new handshake messages to be

somewhat more consistent with existing convention
and to remove a duplicate registration.

■■ Remove renegotiation.
■■ Remove point format negotiation.
■■ Remove GMT time.
■■ Merge in support for ECC from RFC 4492 but without

explicit curves.

■■ Remove the unnecessary length field from the AD
input to AEAD ciphers.

■■ Rename {Client,Server}KeyExchange to {Client,Server}
KeyShare.

■■ Add an explicit HelloRetryRequest to reject the client’s.
■■ Increment version number.
■■ Rework handshake to provide 1-RTT mode.
■■ Remove custom DHE groups.
■■ Remove support for compression.
■■ Remove support for static RSA and DH key exchange.
■■ Remove support for non-AEAD ciphers.

(For more information, visit: https://tools.ietf.org/html/
draft-ietf-tls-tls13-21 for full current RFC.)

This is an impressive list of enhancements and changes
that will be incorporated into the spec. But, it’s worth
mentioning that man-in-the-middle (MITM) attacks are
still possible with TLS 1.3. Even more important, these
types of attacks will be the only reliable way to get
access to encrypted data. Rapid7 raises that concern
here: https://blog.rapid7.com/2016/11/10/conflicting-
perspectives-on-the-tls-13-draft/. (See the section
entitled “The request.”)

https://tools.ietf.org/html/draft-ietf-tls-tls13-21 for full current RFC
https://tools.ietf.org/html/draft-ietf-tls-tls13-21 for full current RFC
https://blog.rapid7.com/2016/11/10/conflicting-perspectives-on-the-tls-13-draft/
https://blog.rapid7.com/2016/11/10/conflicting-perspectives-on-the-tls-13-draft/

5 Transport Layer Security (TLS) 1.3

WHITE PAPER

Connection Creation: TLS 1.2 and 1.3
Two features in the list above stand out: RTT-1 and RTT-0
support. RTT stands for Round Trip Time and means that
there is only one RTT needed to establish the encrypted
communication and best case zero RTT.

Let’s take a look at the communication in TLS 1.2.

When building a connection between client and server
TLS 1.2 uses 2 RTT to connect, exchange keys, agree
on the encryption, and, finally, exchange data over an
encrypted channel. When a client has connected to a
server previously, it is able—also in TLS 1.2—to decrease
the RTT by one and do an RTT-1-based reconnect. TLS
1.2 client uses a so-called session ticket/ID to reconnect
to servers that are sent in the client “hello” and helps the
server simply “safe” the exchange, as both parties have
done that already and simply have to reuse the data they
had agreed on previously.

TLS .1.3, in contrast, uses an RTT-1 while building the
connection and sends key data, such as the supported
ciphers. In addition, the client tries to make an educated
guess on what key the server could be using and sends
that within the initial process. All the server has to do
is to agree and send back the matching key material
such as the certificate, which is now encrypted as well,
as it has already acquired the key in the initial request.
After the server responds, the client simply needs
to acknowledge that all is well, and, after that, the
encrypted connection is established.

Figure 1. Initial TLS 1.2 connection.

Figure 2. TLS 1.3 connection.

Client

Client Hello

Encrypted Data Exchange

Server Hello
Certificate

...

...
Finished

ClientKey Exchange
...
Finished

Server

Client Server

Client

Client Hello
Key Data

Encrypted Data Exchange

Server Hello
Key Data

Certificate
...

Finished

Server

Client Server

6 Transport Layer Security (TLS) 1.3

WHITE PAPER

If you now add the method for session resumption—
explained above for TLS 1.2—you see that the RTT is
reduced to essentially zero. The only difference is that
during the connection of a TLS 1.3 server and a TLS
1.3 client, both agree on a pre-shared key—PSK—that
is used later to resume the connection. It is no longer
the session ID. This PSK is also encrypted due to the
previous key exchange.

If a TLS client is not trying to resume or reuse the
connection, it will send the PSK along with the HTTP
request. The server will respond with its equivalents and
the HTTP response.

What About Man-in-the-Middle Attacks Now?
Based on the previously provided explanation on how
a TLS connection is established in T:S 1.3, it becomes
evident that an offline decryption is no longer possible.
The deprecation of RSA hashes removed the ability
to see a clear text hash as part of the encryption
negotiation. The lack of this clear text information
does not allow attackers to create keys in a brute-force
manner and then compare their hashes against the one
in the connection in order to find the matching one.

Active participation in the connection negotiation
and creation is required in order to decrypt the data
and secure the payload in the encrypted section.

Given that, the urban legend of the inability of an
MITM proxy to scan TLS 1.3 remains just that. This
might have been spawned when Chrome, in early
2017, added support for TLS 1.3, which then disabled
certain proxies from scanning the data stream or even
blocking the connections. But, in general, TLS 1.3 will
enhance security through stronger keys and ciphers. It
will increase performance by reducing RTT but will not
remove the option of scanning traffic.

McAfee Web Gateway and McAfee Web Gateway
Cloud Service
With the release of McAfee® Web Gateway version 8.2,
the proxy fully supports TLS 1.3 on the client as well as
on the server side. This bidirectional implementation
enables customers to avoid downgrading TLS 1.3 to TLS
1.2 and thereby weaken their encryption and security
posture. HTTPS content scanning will continue, as with
previous versions of TLS, and content security filters are
available to TLS 1.3-based traffic as well.

For more information, visit McAfee Web Gateway and
McAfee® Web Gateway Cloud Service.

https://www.mcafee.com/enterprise/en-us/products/web-gateway.html
https://www.mcafee.com/enterprise/en-us/products/web-gateway-cloud-service.html

About McAfee
McAfee is the device-to-cloud cybersecurity company.
Inspired by the power of working together, McAfee
creates business and consumer solutions that make
our world a safer place. By building solutions that
work with other companies’ products, McAfee helps
businesses orchestrate cyber environments that are
truly integrated, where protection, detection, and
correction of threats happen simultaneously and
collaboratively. By protecting consumers across all
their devices, McAfee secures their digital lifestyle
at home and away. By working with other security
players, McAfee is leading the effort to unite against
cybercriminals for the benefit of all.

www.mcafee.com.

McAfee and the McAfee logo are trademarks or registered trademarks of McAfee, LLC or its subsidiaries in the US and other countries.
Other marks and brands may be claimed as the property of others. Copyright © 2019 McAfee, LLC. 4367_1019
OCTOBER 2019

2821 Mission College Blvd.
Santa Clara, CA 95054
888.847.8766
www.mcafee.com

7 Transport Layer Security (TLS) 1.3

https://www.mcafee.com/enterprise/en-us/home.html
http://www.mcafee.com
http://www.mcafee.com

